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Abstract. Vacuum expectation values of the field square and the energy-momentum tensor for the elec-
tromagnetic field are investigated for the geometry of a wedge with a coaxial cylindrical boundary. All
boundaries are assumed to be perfectly conducting, and both regions inside and outside the shell are con-
sidered. By using the generalized Abel–Plana formula, the vacuum expectation values are presented in the
form of the sum of two terms. The first one corresponds to the geometry of the wedge without the cylindrical
shell, and the second term is induced by the presence of the shell. The vacuum energy density induced by
the shell is negative for the interior region and positive for the exterior region. The asymptotic behavior of
the vacuum expectation values are investigated in various limiting cases. It is shown that the vacuum forces
acting on the wedge sides due to the presence of the cylindrical boundary are always attractive.

PACS. 03.70.+k

1 Introduction

The Casimir effect is among the most interesting macro-
scopic manifestations of quantum fluctuations. It has im-
portant implications on all scales, from cosmological to
subnuclear, and it has become in recent decades an increas-
ingly popular topic in quantum field theory. In addition to
its fundamental interest, the Casimir effect also plays an
important role in the fabrication and operation of nano-
and micro-scale mechanical systems. The imposition of
boundary conditions on a quantum field leads to the mod-
ification of the spectrum for the zero-point fluctuations
and results in the shift in the vacuum expectation values
for physical quantities such as the energy density and
stresses. In particular, the confinement of quantum fluctu-
ations causes forces that act on constraining boundaries.
The particular features of the resulting vacuum forces de-
pend on the nature of the quantum field, the type of space-
time manifold, the boundary geometries and the specific
boundary conditions imposed on the field. Since the ori-
ginal work by Casimir [1], much theoretical and experimen-
tal work has been done on this problem (see, e.g., [2–5]
and references therein). Many different approaches have
been used: the mode-summation method with combination
of the zeta function regularization technique, the Green
function formalism, multiple scattering expansions, heat-
kernel series, etc. Advanced field-theoretical methods have
been developed for Casimir calculations during the past
years [6–22]. However, there are still difficulties in both
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interpretation and renormalization of the Casimir effect.
Straightforward computations of the geometry dependen-
cies are conceptually complicated, since relevant informa-
tion is subtly encoded in the fluctuation spectrum [15–22].
Analytic solutions can usually be found only for highly
symmetric geometries including planar, spherically and
cylindrically symmetric boundaries. Recently the Casimir
energy has been evaluated exactly for several less symmet-
ric configurations of experimental interest. These include
a sphere in front of a plane and a cylinder in front of
a plane [23–26].
Investigations of quantum effects for cylindrical bound-

aries received a great deal of attention. In addition to
the traditional problems of quantum electrodynamics in
the presence of material boundaries, the Casimir effect
for cylindrical geometries can also be important for flux
tube models of confinement [27–29] and for determining
the structure of the vacuum state in interacting field theo-
ries [30]. The calculation of the vacuum energy of electro-
magnetic field with boundary conditions defined on a cylin-
der turned out to be technically a more involved problem
than the analogous one for a sphere. First, the Casimir
energy of an infinite perfectly conducting cylindrical shell
has been calculated in [31] by introducing an ultraviolet
cutoff, and later the corresponding result was derived by
the zeta function technique [32–34] (for a recent discussion
of the Casimir energy and self-stresses in the more gen-
eral case of a dielectric-diamagnetic cylinder, see [35–37]
and references therein). The local characteristics of the cor-
responding electromagnetic vacuum, such as energy dens-
ity and vacuum stresses, are considered in [38] for the
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interior and exterior regions of a conducting cylindrical
shell, and in [39] for the region between two coaxial shells
(see also [40]). The vacuum forces acting on the bound-
aries in the geometry of two cylinders are also considered
in [41–43]. The scalar Casimir densities for a single and two
coaxial cylindrical shells with Robin boundary conditions
are investigated in [44, 45]. The less symmetric configu-
ration of two eccentric perfectly conducting cylinders is
considered in [46]. The vacuum energy for a perfectly con-
ducting cylinder of an elliptical section is evaluated in [47]
by the mode-summation method, using the ellipticity as
a perturbation parameter. The Casimir forces acting on
two parallel plates inside a conducting cylindrical shell are
investigated in [48].
Aside from their own theoretical and experimental in-

terest, exactly solvable problems with this type of bound-
aries are useful for testing the validity of various approx-
imations used to deal with more complicated geometries.
From this point of view the wedge with a coaxial cylindri-
cal boundary is an interesting system, since the geometry
is non-trivial and it includes two dynamical parameters,
the radius of the cylindrical shell and the opening angle
of the wedge. This geometry is also interesting from the
point of view of a general analysis of surface divergences
in the expectation values of local physical observables for
boundaries with discontinuities. The non-smoothness of
the boundary generates additional contributions to the
heat-kernel coefficients (see, for instance, the discussion in
[49–51] and references therein). The present paper is con-
cerned with a local analysis of the vacuum of the electro-
magnetic field constrained to satisfy perfectly conducting
boundary conditions on the boundary surfaces of a wedge
with a coaxial cylindrical boundary. Namely, we will study
the vacuum expectation values of the field squares and the
energy-momentum tensor for the electromagnetic field for
both regions inside and outside the cylindrical shell. In
addition to describing the physical structure of the quan-
tum field at a given point, the energy-momentum tensor
acts as the source of gravity in the Einstein equations.
It therefore plays an important role in modeling the self-
consistent dynamics involving the gravitational field. The
vacuum expectation value of the square of the electric field
determines the electromagnetic force on a neutral polar-
izable particle. Some investigations most relevant to the
present paper are contained in [2, 52–57], where the geom-
etry of a wedge without a cylindrical boundary is consid-
ered for a conformally coupled scalar and electromagnetic
fields in a four dimensional spacetime. The total Casimir
energy of a semi-circular infinite cylindrical shell with per-
fectly conducting walls is considered in [58] by using the
zeta function technique. For a scalar field with an arbitrary
curvature coupling parameter, theWightman function, the
vacuum expectation values of the field square and the
energy-momentum tensor in the geometry of a wedge with
an arbitrary opening angle and with a cylindrical boundary
are evaluated in [59, 60]. Note that, unlike the case of con-
formally coupled fields, for general coupling the vacuum
energy-momentum tensor is angle-dependent and diverges
on the wedge sides. Our method here employs the mode
summation and is based on a variant of generalized Abel–

Plana formulae [40, 61, 62]. This enables us to extract from
the vacuum expectation values the parts due to a wedge
without the cylindrical shell and to present the parts in-
duced by the shell in terms of strongly convergent integrals.
Note that the closely related problem of the vacuum densi-
ties induced by a cylindrical boundary in the geometry of
a cosmic string is investigated in [63, 64] for both scalar and
electromagnetic fields.
We have organized the paper as follows. In the next sec-

tion we describe the structure of the modes for a wedge
with a cylindrical shell in the region inside the shell. By
applying to the corresponding mode sums the generalized
Abel–Plana formula, we evaluate the vacuum expectation
values of the electric and magnetic field square. Various
limiting cases of the general formulae are discussed. Sec-
tion 3 is devoted to the investigation of the vacuum ex-
pectation values for the energy-momentum tensor of the
electromagnetic field in the region inside the shell. The
additional vacuum forces acting on the wedge sides due
to the presence of the cylindrical boundary are evaluated.
In Sect. 4 we consider the vacuum densities for a wedge
with the cylindrical shell in the exterior region with re-
spect to the shell. Formulae for the shell contributions are
derived and the corresponding surface divergences are in-
vestigated. The vacuum forces acting on the wedge sides
are discussed. The main results are summarized and dis-
cussed in Sect. 5.

2 Vacuum expectation values of the field
square inside a cylindrical shell

Consider a wedge with the opening angle φ0 and with
a coaxial cylindrical boundary of radius a (see Fig. 1), as-
suming that all boundaries are perfectly conducting. In
accordance with the problem’s symmetry, in the discussion
below cylindrical coordinates (r, φ, z) will be used. We are
interested in the vacuum expectation values (VEVs) of the
field square and the energy-momentum tensor for the elec-
tromagnetic field. Expanding the field operator in terms of
creation and annihilation operators and using the commu-
tation relations, the VEV for a quantity F{Ai, Ak} bilinear
in the field can be presented in the form of the mode sum:

〈0|F {Ai, Ak} |0〉=
∑

α

F {Aαi, A
∗
αk} , (1)

where {Aαi, A∗αk} is a complete set of solutions of classi-
cal field equations satisfying the boundary conditions on
the bounding surfaces and specified by a set of quantum
numbers α.
In accordance with (1), for the evaluation of the VEVs

for the square of the electric and magnetic fields and the
energy-momentum tensor, the corresponding eigenfunc-
tions are needed. In this section we consider the region in-
side the cylindrical shell (region I in Fig. 1). For the geom-
etry under consideration, there are two different types
of eigenfunctions, corresponding to transverse magnetic
(TM) and transverse electric (TE) waves. In the discus-
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Fig. 1. Geometry of a wedge
with a coaxial cylindrical
boundary with radius a

sion below we will specify these modes by the index λ= 0
and λ= 1 for the TM and TE waves, respectively. In the
Coulomb gauge, the vector potentials for the TM and TE
modes are given by the formulae (here and below Gaussian
units are used)

Aα = βα

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1/iω)
(
γ2e3+ik∇t

)
Jq|m|(γr) sin(qmφ)

× exp [i (kz−ωt)] , λ= 0 ,

−e3×∇t
{
Jq|m|(γr) cos(qmφ)

× exp [i (kz−ωt)]} , λ= 1 ,

(2)

where e3 is the unit vector along the axis of the wedge, ∇t
is the part of the nabla operator transverse to this axis,
Jν(x) is a Bessel function of the first kind, and

ω2 = γ2+k2, q = π/φ0 . (3)

In (2),m= 1, 2, . . . for λ= 0 andm= 0, 1, 2, . . . for λ= 1.
Equations (2) for the fundamental TM and TE modes are
obtained from the corresponding formulae for a cylindrical
waveguide (see, for instance, [65]) by imposing the perfect
conductor boundary conditions on the wedge sides φ= 0
and φ= φ0. The normalization coefficient βα is found from
the orthonormalization condition for the vector potential:

∫
dV Aα ·A

∗
α′ =

2π

ω
δαα′ , (4)

where the integration goes over the region inside the shell.
From this condition, by using the standard integral involv-
ing the square of the Bessel function, one finds

β2α =
4qTqm(γa)

πωaγ
δm, δm =

{
1/2, m= 0 ,

1, m �= 0 ,
(5)

where we have introduced the notation

Tν(x) = x
[
J
′2
ν (x)+ (1−ν

2/x2)J2ν (x)
]−1
. (6)

The eigenfunctions (2) satisfy the standard boundary
conditions for the electric and magnetic fields, n×E = 0
and n ·B = 0, on the wedge sides corresponding to φ= 0
and φ= φ0, with n being the normal to the boundary. The

eigenvalues for the quantum number γ are determined by
the boundary conditions on the cylindrical shell. From the
latter it follows that these eigenvalues are solutions of

J(λ)qm (γa) = 0, λ= 0, 1 , (7)

where we use the notation J
(0)
ν (x) = Jν(x) and J

(1)
ν (x) =

J ′ν(x). We will denote the corresponding eigenmodes by

γa= j
(λ)
m,n, n = 1, 2, . . . , assuming that the zeros j

(λ)
m,n are

arranged in ascending order. Consequently, the eigenfunc-
tions are specified by the set of quantum numbers α =
(k,m, λ, n).
First we consider the VEVs of the squares of the electric

and magnetic fields inside the shell. Substituting the eigen-
functions (2) into the corresponding mode-sum formula,
we find

〈0|F 2|0〉=
4q

πa3

∞∑′

m=0

∫ +∞

−∞
dk
∑

λ=0,1

∞∑

n=1

j
(λ)3
m,nTqm

(
j
(λ)
m,n

)

√
j
(λ)2
m,n +k2a2

× g(ηFλ)
[
Φ(λ)qm(φ), Jqm(j

(λ)
m,nr/a)

]
, (8)

where F = E,B with ηEλ = λ, ηBλ = 1−λ, and the prime
in the summation over m means that the term m = 0
should be halved. In (8), for a given function f(x), we have
introduced the notation

g(0)[Φ(φ), f(x)]

=
(
k2r2/x2

) [
Φ2(φ)f ′2(x)+Φ′2(φ)f2(x)/x2

]

+Φ2(φ)f2(x), (9)

g(1)[Φ(φ), f(x)]

=
(
1+k2r2/x2

) [
Φ2(φ)f ′2(x)+Φ′2(φ)f2(x)/x2

]
,

(10)

and

Φ(λ)ν (φ) =

{
sin(νφ), λ= 0 ,

cos(νφ), λ= 1 .
(11)

Equations (8), corresponding to the electric and magnetic
fields, are divergent. They may be regularized introduc-
ing a cutoff function ψµ(ω) with the cutting parameter µ,
which makes the divergent expressions finite and satisfies
the condition ψµ(ω)→ 1 for µ→ 0. After the renormal-
ization the cutoff function is removed by taking the limit
µ→ 0. An alternative way is to consider the product of
the fields at different spacetime points and to take the
coincidence limit after the subtraction of the correspond-
ing Minkowskian part. Our approach here follows the first
method.
As we do not know the explicit expressions for the zeros

j
(λ)
m,n as functions on m and n, and the summand in (8) is
a strongly oscillating function for large values of m and n,
this formula is not convenient for the further evaluation
of the VEVs of the field square. In order to obtain an al-
ternative representation, we apply to the series over n the
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generalized Abel–Plana summation formula [61, 62],

∞∑

n=1

Tqm

(
j(λ)m,n

)
f(j(λ)m,n)

=
1

2

∫ ∞

0

dx f(x)+
π

4
Res
z=0
f(z)

Y
(λ)
qm (z)

J
(λ)
qm (z)

−
1

2π

∫ ∞

0

dx
K
(λ)
qm (x)

I
(λ)
qm (x)

×
[
e−qmπif(eπi/2x)+eqmπif(e−πi/2x)

]
, (12)

where Yν(z) is the Neumann function and Iν(z),Kν(z) are
the modified Bessel functions. As can be seen, for points
away from the shell the contribution to the VEVs com-
ing from the second integral term on the right-hand side
of (12) is finite in the limit µ→ 0 and, hence, the cutoff
function in this term can safely be removed. As a result the
VEVs can be written in the form

〈
0|F 2|0

〉
=
〈
0w|F

2|0w
〉
+
〈
F 2
〉
cyl
, (13)

where

〈
0w|F

2|0w
〉

=
q

π

∞∑′

m=0

∫ +∞

−∞
dk

∫ ∞

0

dγ
γ3ψµ(ω)√
γ2+k2

×

{(
1+
2k2

γ2

)[
J ′2qm(γr)+

q2m2

γ2r2
J2qm(γr)

]
+J2qm(γr)

− (−1)ηF1 cos(2qmφ)

×

[
J ′2qm(γr)−

(
1+
q2m2

γ2r2

)
J2qm(γr)

]}
, (14)

and

〈F 2〉cyl =
8q

π2

∞∑′

m=0

∫ ∞

0

dk
∑

λ=0,1

∫ ∞

k

dxx3

×
K
(λ)
qm (xa)

I
(λ)
qm (xa)

G(ηFλ)
[
k, Φ

(λ)
qm(φ), Iqm(xr)

]

√
x2−k2

.

(15)

In (15) we have introduced the notation

G(0)[k, Φ(φ), f(x)]

=
(
k2r2/x2

) [
Φ2(φ)f ′2(x)+Φ′2(φ)f2(x)/x2

]

+Φ2(φ)f2(x) , (16)

G(1)[k, Φ(φ), f(x)]

=
(
k2r2/x2−1

) [
Φ2(φ)f ′2(x)+Φ′2(φ)f2(x)/x2

]
.

(17)

The second term on the right-hand side of (13) vanishes in
the limit a→∞, and the first one does not depend on a.
Thus, we can conclude that the term 〈0w|F 2|0w〉 corres-
ponds to the part in the VEVs when the cylindrical shell is

absent with the corresponding vacuum state |0w〉. Hence,
the application of the generalized Abel–Plana formula en-
ables us to extract from the VEVs the parts induced by the
cylindrical shell without specifying the cutoff function. In
addition, these parts are presented in terms of the expo-
nentially convergent integrals.
First, let us concentrate on the part corresponding to

the wedge without a cylindrical shell. First of all we note
that in (14) the part that does not depend on the angular
coordinate φ is the same as in the corresponding problem
of the cosmic string geometry with the angle deficit 2π−
φ0 [64], which we shall denote by 〈0s|F 2|0s〉. For this part
we have

〈
0s|F

2|0s
〉

=
q

π

∞∑′

m=0

∫ +∞

−∞
dk

∫ ∞

0

dγ
γ3ψµ(ω)√
γ2+k2

×

{(
1+
2k2

γ2

)[
J ′2qm(γr)+

q2m2

γ2r2
J2qm(γr)

]
+J2qm(γr)

}

=
〈
0M|F

2|0M
〉
−
(q2−1)(q2+11)

180πr4
, (18)

where 〈0M|F 2|0M〉 is the part corresponding to the
Minkowskian spacetime without boundaries and in the last
expression we have removed the cutoff. To evaluate the
part in (14) that depends on φ, we firstly consider the case
when the parameter q is an integer. In this case the summa-
tion overm can be done by using [66, 67]

∞∑′

m=0

cos(2qmφ)J2qm(y) =
1

2q

q−1∑

l=0

J0(2y sin(φ+φ0l)). (19)

The formulae for the other series entering in (14) are ob-
tained from (19) taking the derivatives with respect to φ
and y. In particular, for the combination appearing in the
angle-dependent part, we obtain

∞∑′

m=0

cos(2qmφ)

[
J ′2qm(y)−

(
1+
q2m2

y2

)
J2qm(y)

]

=−
1

q

q−1∑

l=0

J ′1 (2y sin (φ+φ0l)) . (20)

Substituting this in (14), the remaining integrals are eval-
uated by introducing polar coordinates in the (k, γ)-plane.
In this way one finds

〈
0w|F

2|0w
〉
=
〈
0s|F

2|0s
〉
−
3(−1)ηF1

4πr4

q−1∑

l=0

sin−4(φ+ lπ/q) .

(21)

The sum on the right-hand side of this formula is evaluated
by the double differentiation of the relation [66]

q−1∑

l=0

cos−2(x+ lπ/q) = q2 sin−2(qx+ qπ/2). (22)
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Finally, for the renormalized VEVs of the field square in
the geometry of a wedge without a cylindrical boundary we
find

〈
F 2
〉
w,ren

=−

(
q2−1

) (
q2+11

)

180πr4

−
(−1)ηF1q2

2πr4 sin2(qφ)

[
3q2

2 sin2(qφ)
+1− q2

]
,

(23)

with ηE1 = 1 and ηB1 = 0. Though we have derived this
formula for integer values of the parameter q, by the ana-
lytic continuation it is valid for non-integer values of this
parameter as well. The expression on the right of (23) is
invariant under the replacement φ→ φ0−φ, and, as we
could expect, the VEVs are symmetric with respect to the
half-plane φ= φ0/2. Equation (23) for F =E was derived
in [55] within the framework of Schwinger’s source theory.
For q = 1 from (23) as a special case we obtain the renor-
malized VEVs of the field square for a conducting plate. In
this case x= r sinφ is the distance from the plate and one
has

〈F 2〉pl,ren =−
3(−1)ηF1

4πx4
. (24)

Another special case, q = 1/2, corresponds to the geom-
etry of a half-plane. In (23) taking the limit r→∞, with
x0 = rφ0 being fixed, we obtain the corresponding results
in the region between two parallel plates located at the
points x= 0 and x= x0:

〈
F 2
〉
2pl,ren

=−
π3

180x40
−

(−1)ηF1π3

2x40 sin
2(πx/x0)

×

[
3

2 sin2(πx/x0)
−1

]
. (25)

Now, we turn to the investigation of the parts in the
VEVs of the field square induced by the cylindrical bound-
ary and given by (15). By using

∫ ∞

0

dk km
∫ ∞

k

dx
xf(x)
√
x2−k2

=

√
πΓ
(
m+1
2

)

2Γ
(
m
2 +1

)
∫ ∞

0

dxxm+1f(x) , (26)

these parts are presented in the form

〈
F 2
〉
cyl
=
2q

π

∞∑′

m=0

∑

λ=0,1

∫ ∞

0

dxx3
K
(λ)
qm (xa)

I
(λ)
qm (xa)

G(ηFλ)

×
[
Φ(λ)qm(φ), Iqm(xr)

]
. (27)

Here, for given functions f(x) and Φ(φ), we have intro-
duced the notation

G(0)[Φ(φ), f(x)] = Φ2(φ)f ′2(x)+Φ′2(φ)f2(x)/x2

+2Φ2(φ)f2(x), (28)

G(1)[Φ(φ), f(x)] =−Φ2(φ)f ′2(x)−Φ′2(φ)f2(x)/x2.
(29)

As we can see, the parts in the VEVs induced by the cylin-
drical shell are symmetric with respect to the half-plane
φ= φ0/2.
The expression in the right-hand side of (27) is finite for

0< r < a including the points on the wedge sides, and it
diverges on the shell. To find the leading term in the cor-
responding asymptotic expansion, we note that near the
shell the main contribution comes from large values of m.
By using the uniform asymptotic expansions of the modi-
fied Bessel functions (see, for instance, [68]) for large values
of the order, up to the leading order, for the points a− r
� a| sinφ|, a| sin(φ0−φ)| we find

〈
F 2
〉
cyl
≈−

3(−1)ηF1

4π(a− r)4
. (30)

For the points near the edges (r = a, φ= 0, φ0) the lead-
ing terms in the corresponding asymptotic expansions are
the same as for the geometry of a wedge with the opening
angle φ0 = π/2. The leading terms given by (30) are the
same as for the geometry of a single plate (see (24)). They
do not depend on φ0 and have opposite signs for the elec-
tric and magnetic fields. In particular, the leading terms
are cancelled in the evaluation of the vacuum energy dens-
ity. Surface divergences originate in the unphysical nature
of the perfect conductor boundary conditions and are well-
known in quantum field theory with boundaries. In reality
the expectation values will attain a limiting value on the
conductor surface that will depend on the molecular de-
tails of the conductor. From the formulae given above it
follows that the main contributions to 〈F 2〉cyl are due to
the frequencies ω � (a− r)−1. Hence, we expect that (27)
is valid for real conductors up to distances r for which (a−
r)−1� ω0, with ω0 being the characteristic frequency, such
that for ω > ω0 the conditions for perfect conductivity fail.
Near the edge r= 0, assuming that r/a� 1, the asymp-

totic behavior of the part induced in the VEVs of the field
square by the cylindrical shell depends on the parameter q.
For q > 1+ηF1, the dominant contribution comes from the
lowest modem= 0 and to the leading order one has

〈
F 2
〉
cyl
≈−(−1)ηF1

21−ηF1q

πa4

( r
2a

)2ηF1 ∫ ∞

0

dxx3
K1(x)

I1(x)
.

(31)

In this case the quantity 〈B2〉cyl takes a finite limiting
value on the edge r= 0, whereas 〈E2〉cyl vanishes as r2. For
q < 1+ ηF1 the main contribution comes from the mode
withm= 1 and the shell-induced parts diverge on the edge
r = 0. The leading terms are given by

〈
F 2
〉
cyl
≈−
(−1)ηF1q(r/a)2(q−1)

22q−1πΓ 2(q)a4

×

∫ ∞

0

dxx2q+1
[
Kq(x)

Iq(x)
−
K ′q(x)

I ′q(x)

]
. (32)

As for the points near the shell, here the leading diver-
gences in the VEVs of the electric and magnetic fields are
cancelled in the evaluation of the vacuum energy dens-
ity. For q = 1+ηF1 the main contribution comes from the
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modes m = 0, 1 and the corresponding asymptotic behav-
ior is obtained by summing the right-hand sides of (31)
and (32). In accordance with (23), near the edge, r = 0,
the total VEV is dominated by the part coming from the
wedge without the cylindrical shell. Note that the quan-
tity a4〈F 2〉cyl depends on the radial coordinate through
the ratio r/a and, hence, (31) and (32) also describe the
asymptotic behavior of the VEVs for large values of the
cylindrical shell radius when r is fixed. In this limit the
VEVs vanish as 1/a4+2ηF1 for q > 1+ηF1, and like 1/a

2+2q

for q < 1+ηF1. Here we have considered the VEVs for the
field square. The VEVs for the bilinear products of the
fields at different spacetime points may be evaluated in
a similar way.
Now, we turn to the investigation of the behavior of

the VEVs induced by the cylindrical boundary in the limit
q
 1. In this limit the order of the modified Bessel func-
tions is large form �= 0. By using the corresponding asymp-
totic formulae, it can be seen that the contribution of
these terms is suppressed by the factor exp[−2qm ln(a/r)].
As a result, the main contribution comes from the low-
est mode, m= 0, and the VEVs induced by the cylindrical
shell are proportional to q. Note that in this limit the part
corresponding to the wedge without the cylindrical shell
behaves as q4.

3 Vacuum energy-momentum tensor
inside the cylindrical shell

Now let us consider the VEV of the energy-momentum ten-
sor in the region inside the cylindrical shell. Substituting
the eigenfunctions (2) into the corresponding mode-sum
formula, for the non-zero components we obtain (no sum-
mation over i)

〈
0|T ii |0

〉
=

q

2π2a3

∞∑′

m=0

∫ +∞

−∞
dk
∑

λ=0,1

∞∑

n=1

j
(λ)3
m,nTqm

(
j
(λ)
m,n

)

√
j
(λ)2
m,n +k2a2

×f (i)
[
Φ(λ)qm(φ), Jqm(j

(λ)
m,nr/a)

]
, (33)

〈
0|T 12 |0

〉
=−

q2

4π2a

∂

∂r

∞∑′

m=0

m sin(2qmφ)

∫ +∞

−∞
dk
∑

λ=0,1

(−1)λ

×
∞∑

n=1

j
(λ)
m,nTqm

(
j
(λ)
m,n

)

√
j
(λ)2
m,n +k2a2

J2qm

(
j(λ)m,nr/a

)
, (34)

where i= 0, 1, 2, 3, and we have introduced the notation

f (j)[Φ(φ), f(x)] = (−1)j
(
2k2/γ2+1

)

×
[
Φ2(φ)f ′2(x)+Φ′2(φ)f2(x)/y2

]

+Φ2(φ)f2(x), (35)

f (l)[Φ(φ), f(x)] = (−1)lΦ2(φ)f ′2(x)

−
[
Φ2(φ)+ (−1)lΦ′2(φ)/x2

]
f2(x),

(36)

with j = 0, 3 and l = 1, 2. As in the case of the field square,
in (33) and (34) we introduce a cutoff function and ap-
ply (12) for the summation over n. This enables us to
present the vacuum energy-momentum tensor in the form
of the sum

〈
0|T ki |0

〉
=
〈
0w|T

k
i |0w

〉
+
〈
T ki
〉
cyl
, (37)

where 〈0w|T ki |0w〉 is the part corresponding to the geom-
etry of a wedge without a cylindrical boundary and 〈T ki 〉cyl
is induced by the cylindrical shell. By taking into ac-
count (26), the latter may be written in the form (no sum-
mation over i)

〈
T ii
〉
cyl
=
q

2π2

∞∑′

m=0

∑

λ=0,1

∫ ∞

0

dxx3
K
(λ)
qm (xa)

I
(λ)
qm (xa)

×F (i)
[
Φ(λ)qm(φ), Iqm(xr)

]
, (38)

〈
T 12
〉
cyl
=
q2

4π2
∂

∂r

∞∑′

m=0

m sin(2qmφ)
∑

λ=0,1

(−1)λ

×

∫ ∞

0

dxx
K
(λ)
qm (xa)

I
(λ)
qm (xa)

I2qm(xr), (39)

with the notation

F (i)[Φ(φ), f(y)] = Φ2(φ)f2(y), i= 0, 3, (40)

F (i)[Φ(φ), f(y)] =−(−1)iΦ2(φ)f ′2(y)

−
[
Φ2(φ)− (−1)iΦ′2(φ)/y2

]
f2(y),

i= 1, 2. (41)

The diagonal components are symmetric with respect to
the half-plane φ= φ0/2, whereas the off-diagonal compon-
ent is an odd function under the replacement φ→ φ0−φ.
As can easily be checked, the tensor 〈T ki 〉cyl is traceless and
satisfies the covariant continuity equation ∇k〈T ki 〉cyl = 0.
For the geometry under consideration the latter leads to

∂

∂r

(
r
〈
T 12
〉
cyl

)
+ r
∂

∂φ

〈
T 22
〉
cyl
= 0, (42)

∂

∂r

(
r
〈
T 11
〉
cyl

)
+ r
∂

∂φ

〈
T 21
〉
cyl
=
〈
T 22
〉
cyl
. (43)

As is seen from (39), the off-diagonal component 〈T 12 〉cyl
vanishes at the wedge sides and for these points the VEV
of the energy-momentum tensor is diagonal. By using
the inequalities I ′ν(x) <

√
1+ν2/x2Iν(x) and −K ′ν(x) >√

1+ν2/x2Kν(x) for the modified Bessel functions, it can
be seen thatK ′ν(x)/I

′
ν(x)+Kν(x)/Iν(x)< 0. From this re-

lation it follows that the vacuum energy density induced
by the cylindrical shell in the interior region is always
negative.
The renormalized VEV of the energy-momentum ten-

sor for the geometry without the cylindrical shell is ob-
tained by using the corresponding formulae for the field
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square. For the corresponding energy density one finds

〈
T 00
〉
w,ren

=
1

8π

(〈
E2
〉
w,ren

+
〈
B2
〉
w,ren

)

=−
(q2−1)(q2+11)

720π2r4
. (44)

As we see, the parts in the VEVs of the field square that
diverge on the wedge sides cancel out, and the corres-
ponding energy density is finite everywhere except the
edge. Equation (44) coincides with the corresponding re-
sult for the geometry of the cosmic string [69, 70] with
the angle deficit 2π−φ0 and in the corresponding formula
q = 2π/φ0. Other components are found from the trace-
lessness condition and the continuity equation and one
has [2, 52, 53]

〈
T ki
〉
w,ren

=−
(q2−1)(q2+11)

720π2r4
diag(1, 1,−3, 1). (45)

As we could expect this VEV vanishes for the geometry
of a single plate corresponding to q = 1. In the limit r→
∞, for fixed values x0 = rφ0, from (45) the standard re-
sult for the geometry of two parallel conducting plates is
obtained.
In general, due to the surface divergences in the VEVs

of the local physical observables, the vacuum forces acting
on the constraining boundaries cannot be directly evalu-
ated by using the corresponding vacuum stresses. How-
ever, for the electromagnetic field the case of plane bound-
aries is an exception. The reason is that for a single per-
fectly conducting plane boundary the VEV of the energy-
momentum tensor vanishes and for the geometry under
consideration the non-trivial contributions come about by
the presence of the second wedge and cylindrical shell.
As a result, for the geometry of a wedge with cylindri-
cal shell the VEV of the energy-momentum tensor is finite
on the wedge sides (except the points on the edges r = 0
and r = a). The corresponding renormalization procedure
is the same as in quantum field theory without bound-
aries, and no counterterms located on the boundary are
needed. The normal force acting on the wedge sides is de-
termined by the component 〈T 22 〉ren of the vacuum energy-
momentum tensor evaluated for φ= 0 and φ= φ0. On the
basis of (37) for the corresponding effective pressure one
has

p2 =−
〈
T 22
〉
ren

∣∣
φ=0,φ0

= p2w+p2cyl, (46)

where

p2w =−
(q2−1)(q2+11)

240π2r4
(47)

is the normal force acting per unit surface of the wedge for
the case without a cylindrical boundary, and the additional
term

p2cyl =−
〈
T 22
〉
cyl

∣∣
φ=0,φ0

=−
q

π2

∞∑′

m=0

∑

λ=0,1

∫ ∞

0

dxx3
K
(λ)
qm (xa)

I
(λ)
qm (xa)

F (λ)qm [Iqm(xr)] ,

(48)

with the notation

F (λ)ν [f(y)] =

{
ν2f2(y)/y2, λ= 0 ,

−f
′2(y)−f2(y), λ= 1

(49)

is induced by the cylindrical shell. As has been mentioned
the finiteness of the normal stress on the wedge sides is
a consequence of the fact that for a single perfectly con-
ducting plane boundary this stress vanishes. Note that
this result can be directly obtained from the symmetry
of the corresponding problem on combination with of
the continuity equation for the energy-momentum ten-
sor. It also survives for more realistic models of the plane
boundary (see, for instance, [71–73]) though the corres-
ponding energy density and parallel stresses no longer
vanish. So we expect that the obtained formula for the
normal force acting on the wedge sides will correctly
approximate the corresponding results of more realis-
tic models in the perfectly conducting limit. From (47)
we see that the corresponding vacuum forces are attrac-
tive for q > 1 and repulsive for q < 1 . In particular, the
equilibrium position corresponding to the geometry of
a single plate (q = 1) is unstable. As regards the part in-
duced by the cylindrical shell, from (48) it follows that
p2cyl < 0 and, hence, the corresponding forces are always
attractive.
Now, let us discuss the behavior of the boundary-

induced part in the VEV of the energy-momentum ten-
sor in the asymptotic region of the parameters. Near the
cylindrical shell the main contribution comes from large
values of m. Thus, using the uniform asymptotic expan-
sions for the modified Bessel functions for large values
of the order, up to the leading order, for the points a−
r� a| sinφ|, a| sin(φ0−φ)| we find

〈
T 00
〉
cyl
≈−
1

2
〈T 22 〉cyl ≈−

(a− r)−3

60π2a
,

〈
T 11
〉
cyl
≈
(a− r)−2

60π2a2
. (50)

These leading terms are the same as those for a cylindri-
cal shell when the wedge is absent. For the points near the
edges (r = a, φ= 0 and φ0) the leading terms in the cor-
responding asymptotic expansions are the same as for the
geometry of a wedge with the opening angle φ0 = π/2. The
latter are given by (45) with q = 2. Near the edge, r→ 0,
for the components (no summation over i) 〈T ii 〉cyl, i= 0, 3,
the main contribution comes from the modem= 0, and we
find

〈
T ii
〉
cyl
≈

q

4π2a4

∫ ∞

0

dxx3
K ′0(x)

I ′0(x)
=−0.0590

q

a4
, i= 0, 3 .

(51)

For the components (no summation over i) 〈T ii 〉cyl, i= 1, 2,
when q > 1 the main contribution again comes from the
m= 0 term, and one has 〈T ii 〉cyl ≈−〈T

0
0 〉cyl, i = 1, 2. For

q < 1 the main contribution to the components 〈T ii 〉cyl,
i= 1, 2, comes from the termm= 1, and we have (no sum-
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mation over i)

〈
T ii
〉
cyl
≈
(−1)iq cos(2qφ)

22q+1π2Γ 2(q)a4

(r
a

)2(q−1)

×

∫ ∞

0

dxx2q+1
[
Kq(x)

Iq(x)
−
K ′q(x)

I ′q(x)

]
, i= 1, 2.

(52)

In this case the radial and azimuthal stresses induced by
the cylindrical shell diverge on the edge r = 0. In the case
q = 1 the sum of the contributions of the terms withm= 0
andm= 1 given by (51) and (52) should be taken. For the
off-diagonal component the main contribution comes from
them= 1 mode, with the leading term

〈
T 12
〉
cyl
≈

q sin(2qφ)

22q+1π2Γ 2(q)a3

(r
a

)2q−1

×

∫ ∞

0

dxx2q+1
[
Kq(x)

Iq(x)
−
K ′q(x)

I ′q(x)

]
, (53)

and this component vanishes on the edge for q > 1/2.
Similar to the case of the field square, (51)–(53) also de-
scribe the asymptotic behavior for the VEV of the energy-
momentum tensor in the limit of large values for the cylin-
drical shell radius when r is fixed.
In the limit q
 1, the contribution of the modes with

m � 1 is suppressed by the factor exp[−2qm ln(a/r)] and
the main contribution comes from the m = 0 mode. The
leading terms are given by (no summation over i)

〈
T ii
〉
cyl
≈

q

4π2a4

∫ ∞

0

dxx3
K ′0(x)

I ′0(x)
I20 (xr/a), i= 0, 3,

(54)
〈
T ii
〉
cyl
≈−

q

4π2a4

∫ ∞

0

dxx3
K ′0(x)

I ′0(x)

×
[
I20 (xr/a)+ (−1)

iI21 (xr/a)
]
, i= 1, 2.

(55)

Though in this limit the vacuum densities are large, due
to the factor 1/q in the spatial volume, the corresponding
global quantities tend to a finite value. In particular, as fol-
lows from (55), in the limit under consideration one has
〈T ii 〉cyl > 0. Note that in the same limit the parts corres-
ponding to the wedge without the cylindrical shell behave
as q4 and, hence, for points not too close to the shell these
parts dominate in the VEVs.
In Figs. 2–5 we have plotted the parts in the VEVs

of the energy-momentum tensor induced by the cylindri-
cal shell, a4〈T ki 〉cyl, as functions of x= (r/a) cosφ and y =
(r/a) sinφ, for a wedge with the opening angle φ0 = π/2.
In Fig. 6 we have presented the dependence of the ef-

fective azimuthal pressure induced by the cylindrical shell
on the wedge sides, a4p2cyl, as a function of r/a for different
values of the parameter q.
There are several special cases of interest for the geom-

etry of boundaries we have considered. The case φ0 = π
corresponds to the semi-circular cylinder. The Casimir
energy for the corresponding interior region is evaluated

Fig. 2. The part in the VEV of the energy density, a4〈T 00 〉cyl,
induced by the cylindrical boundary as a function of x =
(r/a) cosφ and y = (r/a) sinφ for a wedge with φ0 = π/2

Fig. 3. The part in the VEV of the radial stress, a4〈T 11 〉cyl,
induced by the cylindrical boundary as a function of x =
(r/a) cosφ and y = (r/a) sinφ for a wedge with φ0 = π/2

in [58] by using the zeta function technique. The case φ0 =
2π corresponds to the geometry of a cylindrical shell with
a coaxial half-plane. Finally, the limit φ0→ 0, r, a→∞,
assuming that a− r and aφ0 ≡ b are fixed, corresponds to
the geometry of two parallel plates separated by a distance
b, perpendicularly intersected by the third plate. In the
latter case it is convenient to introduce rectangular coor-
dinates (x′1, x′2, x′3) = (x, y, z) with the relations x= a−r
and y = rφ. We will denote the components of the tensors
in these coordinates by primes. The corresponding vacuum
energy-momentum tensor is presented in the form

〈
0|T ′ik |0

〉
=
〈
T ′ik
〉(0)
+
〈
T ′ik
〉(1)
, (56)

where 〈T ′ik 〉
(0) is the vacuum expectation value in the re-

gion between two parallel plates located at y = 0 and y = a,
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Fig. 4. The part in the VEV of the azimuthal stress, a4〈T 22 〉cyl,
induced by the cylindrical boundary as a function of x =
(r/a) cosφ and y = (r/a) sinφ for a wedge with φ0 = π/2

Fig. 5. The part in the VEV of the off-diagonal component,
a4〈T 21 〉cyl, induced by the cylindrical boundary as a function of
x= (r/a) cosφ and y = (r/a) sin φ for a wedge with φ0 = π/2

and 〈T ′ik 〉
(1) is induced by the intersecting plate at x= 0.

The latter is related to the quantities investigated above by

〈
T ′ii
〉(1)
= lim

〈
T ii
〉
cyl
,
〈
T ′12
〉(1)
=− lim

1

a

〈
T 12
〉
cyl
,

(57)

with lim corresponding to the limit a→∞, φ0 → 0 for
fixed a− r and aφ0. Taking this limit in the term with
m = 0 of (38) we replace the modified Bessel functions by
the leading terms of the corresponding asymptotic formu-
lae for large values of the argument and the integral is
taken elementary. For the terms with m �= 0 in (38) and
(39) we note that in the limit under consideration one has
q = π/φ0→∞, and the order of the modified Bessel func-
tions tends to infinity. Introducing the new integration vari-
able x→ qmx, we can replace these functions by their uni-
form asymptotic expansions for large values of the order.
After these replacements the integration and the further
summation overm are done by using the formulae from [74].

Fig. 6. The effective azimuthal pressure induced by the cylin-
drical shell on the wedge sides, a4p2cyl, as a function of r/a.
The numbers near the curves correspond to the values of the
parameter q

4 Vacuum densities in the exterior region

In this section we consider the VEVs for the field square
and the energy-momentum tensor in the region outside the
cylindrical boundary (region II in Fig. 1). The correspond-
ing eigenfunctions for the vector potential are obtained
from (2) by the replacement

Jqm(γr)→ g
(λ)
qm(γa, γr)

= Jqm(γr)Y
(λ)
qm (γa)−Yqm(γr)J

(λ)
qm (γa) ,

(58)

where, as before, λ = 0, 1 correspond to the waves of the
electric and magnetic types, respectively. Now, the eigen-
values for γ are continuous and in the normalization condi-
tion (4) the corresponding part on the right is presented by
the delta function. As the normalization integral diverges
for γ′ = γ, the main contribution to the integral comes
from large values of r, and we can replace the cylindrical
functions with the argument γr by their asymptotic ex-
pressions for large values of the argument. In this way it
can be seen that the normalization coefficient in the exte-
rior region is determined by

β−2α =
8π

q
δmγω

[
J(λ)2qm (γa)+Y

(λ)2
qm (γa)

]
. (59)

Substituting the eigenfunctions into the corresponding
mode-sum formula, for the VEV of the field square one
finds

〈0|F 2|0〉=
2q

π

∞∑′

m=0

∫ +∞

−∞
dk

∫ ∞

0

dγ
∑

λ=0,1

γ3√
k2+γ2

×
g(ηFλ)

[
Φ
(λ)
qm(φ), g

(λ)
qm(γa, γr)

]

J
(λ)2
qm (γa)+Y

(λ)2
qm (γa)

, (60)

where the functions g(ηFλ)[Φ
(λ)
qm(φ), g

(λ)
qm(γa, γr)] are de-

fined by (9) and (10) with the function f(x) = g
(λ)
qm(γa, x).
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To extract from this VEV the part induced by the cylindri-
cal shell, we subtract from the right-hand side the corres-
ponding expression for the wedge without the cylindrical
boundary. The latter is given by (14). The corresponding
difference can be further evaluated by using the identity

g(ηFλ)
[
Φ
(λ)
qm(φ), g

(λ)
qm(γa, γr)

]

J
(λ)2
qm (γa)+Y

(λ)2
qm (γa)

= g(ηFλ)
[
Φ(λ)qm(φ), Jqm(γr)

]

−
1

2

2∑

s=1

J
(λ)
qm (γa)

H
(s)(λ)
qm (γa)

g(ηFλ)
[
Φ(λ)qm(φ),H

(s)
qm(γr)

]
,

(61)

whereH
(1,2)
qm (z) are the Hankel functions. In order to trans-

form the integral over γ with the last term on the right
of (61), in the complex γ-plane we rotate the integration
contour by the angle π/2 for the term with s = 1 and by
the angle −π/2 for the term with s = 2. Due to the well-
known properties of the Hankel functions the integrals over
the corresponding parts of the circles of large radius in the
upper and lower half-planes vanish. After introducing the
modified Bessel functions and integrating over k with the
help of (26), we can write the VEVs of the field square in
the form (13), where the part induced by the cylindrical
shell is given by

〈F 2〉cyl =
2q

π

∞∑′

m=0

∑

λ=0,1

∫ ∞

0

dxx3
I
(λ)
qm (xa)

K
(λ)
qm (xa)

G(ηFλ)

×
[
Φ(λ)qm(φ),Kqm(xr)

]
. (62)

In this formula the functionsG(ηFλ)[Φ(φ), f(x)] are defined
by (28) and (29). Comparing this result with (27), we see
that the expressions for the shell-induced parts in the in-
terior and exterior regions are related by the interchange
Iqm�Kqm. The VEV (62) diverges on the cylindrical shell
with the leading term being the same as that for the inte-
rior region. At large distances from the cylindrical shell we
introduce a new integration variable y= xr and expand the
integrand over a/r. For q > 1 the main contribution comes
from the lowest modem= 0 and up to the leading order we
have

〈E2〉cyl ≈
4q

5πr4

(a
r

)2
, 〈B2〉cyl ≈−

28q

15πr4

(a
r

)2
.

(63)

For q < 1 the dominant contribution into the VEVs at large
distances is due to the modem= 1 with the leading term

〈F 2〉cyl ≈−
4q2(q+1)

πr4

(a
r

)2q[cos(2qφ)
2q+3

+(−1)ηF1
q+1

2q+1

]
.

(64)

For the case q = 1 the contributions of the modes m = 0
and m = 1 are of the same order and the corresponding
leading terms are obtained by summing these contribu-
tions. The latter are given by the right-hand sides of (63)

and (64). As we see, at large distances the part induced by
the cylindrical shell is suppressed with respect to the part
corresponding to the wedge without the shell by the factor
(a/r)2β with β =min(1, q).
Now we turn to the VEVs of the energy-momentum

tensor in the exterior region. Substituting the eigenfunc-
tions into the corresponding mode-sum formula, one finds
(no summation over i)

〈
0|T ii |0

〉
=
q

4π2

∞∑′

m=0

∫ +∞

−∞
dk

∫ ∞

0

dγ

×
∑

λ=0,1

γ3√
k2+γ2

f (i)
[
Φ
(λ)
qm(φ), g

(λ)
qm(γa, γr)

]

J
(λ)2
qm (γa)+Y

(λ)2
qm (γa)

,

(65)

〈
0|T 12 |0

〉
=−

q

8π2
∂

∂r

∞∑′

m=0

m sin(2qmφ)

∫ +∞

−∞
dk

∫ ∞

0

dγ

×
∑

λ=0,1

(−1)λ
γg
(λ)2
qm (γa, γr)√
k2+γ2

. (66)

Subtracting from these VEVs the corresponding expres-
sion for the wedge without the cylindrical boundary, anal-
ogously to the case of the field square, it can be seen that
the VEVs are presented in the form (37), with the parts
induced by the cylindrical shell given by (no summation
over i)

〈
T ii
〉
cyl
=
q

2π2

∞∑′

m=0

∑

λ=0,1

∫ ∞

0

dxx3
I
(λ)
qm (xa)

K
(λ)
qm (xa)

×F (i)
[
Φ(λ)qm(φ),Kqm(xr)

]
, (67)

〈
T 12
〉
cyl
=
q2

4π2
∂

∂r

∞∑′

m=0

m sin(2qmφ)
∑

λ=0,1

(−1)λ

×

∫ ∞

0

dxx
I
(λ)
qm (xa)

K
(λ)
qm (xa)

K2qm(xr). (68)

Here the functions F (i)[Φ(φ), f(y)] are defined by (40)
and (41). By using the inequality given in the paragraph
after (43), we can show that the vacuum energy density
induced by the cylindrical shell in the exterior region is
positive.
In a way similar to that for the interior region, the force

acting on the wedge sides is presented in the form of the
sum (46), where the part corresponding to the wedge with-
out a cylindrical shell is determined by (47) and for the
part due to the presence of the cylindrical shell we have

p2cyl =−
〈
T 22
〉
cyl

∣∣
φ=0,φ0

=−
q

π2

∞∑′

m=0

∑

λ=0,1

∫ ∞

0

dxx3
I
(λ)
qm (xa)

K
(λ)
qm(xa)

F (λ)qm [Kqm(xr)] .

(69)

In this formula, the function F
(λ)
ν [f(y)] is defined by (49)

and the corresponding forces are always attractive.
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The leading divergence in the boundary-induced part
(67) on the cylindrical surface is given by the same formu-
lae as for the interior region. For large distances from the
shell and for q > 1 the main contribution to the VEVs of
the diagonal components comes from them=0, λ= 1 term
and one has (no summation over i)

〈
T ii
〉
cyl
≈−

qci

15π2r4

(a
r

)2
,

c0 = c3 = 2, c1 = 1, c2 =−5. (70)

In the case q < 1 the main contribution to the VEVs of the
diagonal components at large distances from the cylindri-
cal shell comes from them= 1 mode. The leading terms in
the corresponding asymptotic expansions are given by

〈
T ii
〉
cyl
≈−q2(q+1)ci(q)

cos(2qφ)

π2r4

(a
r

)2q
, (71)

with the notation

c0(q) = c3(q) =
1

2q+3
, c1(q) =

2q2+ q+1

(2q+1)(2q+3)
,

c2(q) =−
q+1

2q+1
. (72)

In the case q = 1 the asymptotic terms are determined by
the sum of the contributions coming from the modesm= 0
and m= 1. The latter are given by (70) and (71). For the
off-diagonal component, for all values q the main contribu-
tion at large distances comes from the m= 1 mode, with
the leading term

〈
T 12
〉
cyl
≈−
q3(q+1)

2q+1

sin(2qφ)

π2r3

(a
r

)2q
. (73)

For large values of q, q
 1, the contribution of the terms
with m> 0 is suppressed by the factor exp[−2qm ln(r/a)]
and the main contribution comes form them= 0 term with
the behavior 〈F 2〉cyl ∝ q and 〈T ki 〉cyl ∝ q. In Fig. 7 we have

Fig. 7. The effective azimuthal pressure induced by the cylin-
drical shell on the wedge sides, a4p2cyl, as a function of r/a in
the exterior region for q = 1. The curves for the values q = 0.5, 3
are close to the plotted one

plotted the dependence of the effective azimuthal pressure
induced by the cylindrical shell on the wedge sides, a4p2cyl,
as a function of r/a for q = 1.
In order to investigate the influence of the conduct-

ing boundaries on the properties of the electromagnetic
vacuum we have considered a model where the physical
interactions are replaced by the imposition of boundary
conditions on the electric and magnetic fields for all modes.
Of course, this is an idealization, as real physical materi-
als cannot constrain all the modes of a fluctuating quan-
tum field [10–14, 53]. In general, the physical quantities in
the problems with boundary conditions can be classified
into two main groups (see also the last paper in [10–14]).
The first group includes quantities that do not contain sur-
face divergences. For these quantities the renormalization
procedure is the same as in quantum field theory without
boundaries and they can be evaluated by boundary con-
dition calculations. The contribution of the higher modes
to the boundary induced effects in these quantities is sup-
pressed by the parameters already present in the ideal-
ized model. Examples of such quantities are the energy
density and the vacuum stresses at the points away from
the boundary and the interaction forces between disjoint
bodies. For instance, if we consider the energy density at
the point having a distance x from a perfectly conducting
boundary, the main contribution comes from the frequen-
cies � 1/x. The formulae obtained for this type of quan-
tities on the basis of the idealized model are valid for real
conductors up to distances x for which 1/x� ω0, with ω0
being the characteristic frequency, such that for ω > ω0 the
conditions for perfect conductivity fail. In particular, the
results for the interaction forces between disjoint bodies
of various geometries obtained by boundary condition cal-
culations are confirmed by recent experiments with high
accuracy. An interesting topic for further research in this
direction is to take into account the effects of finite conduc-
tivity for constraining boundaries.
For the quantities from the second group, such as the

energy density on the boundary and the total vacuum en-
ergy, the contribution of the arbitrary higher modes is
dominant, and they contain divergences that cannot be
eliminated by the standard renormalization procedure of
quantum field theory without boundaries. Of course, the
model in which the physical interaction is replaced by
the imposition of boundary conditions on the field for all
modes is an idealization. The appearance of divergences in
the process of the evaluation of physical quantities of the
second type indicates that a more realistic physical model
should be employed for their evaluation. In the literature
on the Casimir effect different field-theoretical approaches
have been discussed to extract the finite parts from the
diverging quantities. However, in the physical interpreta-
tion of these results it should be taken into account that
these terms are only a part of the full expression of the
physical quantity and the terms that are divergent in the
idealized model can be physically essential and their evalu-
ation needs a more realistic model. It seems plausible that
such effects as surface roughness, or the microstructure of
the boundary on small scales can introduce a physical cut-
off needed to produce finite values for surface quantities
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(see, for instance, [75–78] and references therein for models
of this kind). Another possibility, proposed in [10–14], is to
replace a boundary condition by a renormalizable coupling
between the fluctuating field and a non-dynamical smooth
background field representing the material (for the evalu-
ation of the vacuum energy in smooth background fields
see also [6–9]). In this model the standard renormalization
procedure of quantum field theory without boundaries pro-
vides the finite result for the quantities that are divergent
in the boundary condition limit. An alternative mechan-
ism for introducing a cutoff that removes the singular be-
havior on the boundaries is to allow the position of the
boundary to undergo quantum fluctuations [79]. Such fluc-
tuations smear out the contribution of the high frequency
modes without the need to introduce an explicit high fre-
quency cutoff. The main subject of the present paper is
the investigation of the VEVs for the field square and the
energy-momentum tensor of the electromagnetic field at
the points away from the boundaries and the normal vac-
uum forces acting on the wedge sides. These quantities fall
into the first group. They do not contain surface diver-
gences and are completely determined within the frame-
work of standard QED. We expect that similar results
would be obtained in the model in which instead of ex-
ternally imposed boundary condition the fluctuating field
is coupled to a smooth background potential that imple-
ments the boundary condition in a certain limit [10–14].

5 Conclusion

In this paper we have investigated the polarization of the
electromagnetic vacuum by a wedge with a coaxial cylin-
drical boundary, assuming that all boundaries are perfectly
conducting. Both regions inside and outside of the cylin-
drical shell (regions I and II in Fig. 1) are considered. In
Sect. 2 we have evaluated the VEVs of the field square
in the interior region. The corresponding mode sums con-
tain series over the zeros of the Bessel function for TM
modes and its derivative for TE modes. For the summation
of these series we used a variant of the generalized Abel–
Plana formula. The latter enables us to extract from the
VEVs the parts corresponding to the geometry of a wedge
without a cylindrical shell and to present the parts induced
by the shell in terms of integrals that are exponentially con-
vergent for points away from the boundaries. For the wedge
without the cylindrical shell the VEVs of the field square
are presented in the form (23). The first term on the right
of this formula corresponds to the VEVs for the geometry
of a cosmic string with the angle deficit 2π−φ0. The angle-
dependent parts in the VEVs of the electric and magnetic
fields have opposite signs and are cancelled in the eval-
uation of the vacuum energy density. The parts induced
by the cylindrical shell are presented in the form (27). We
have discussed this general formula in various asymptotic
regions of the parameters including the points near the
edges and near the shell. In Sect. 3 we consider the VEV of
the energy-momentum tensor in the region inside the shell.
As for the field square, the application of the Abel–Plana

formula allows us to present this VEV in the form of the
sum of purely wedge and shell-induced parts, (37). For the
geometry of a wedge without the cylindrical boundary the
vacuum energy-momentum tensor does not depend on the
angle φ and is the same as in the geometry of the cosmic
string; it is given by (45). The corresponding vacuum forces
acting on the wedge sides are attractive for φ0 < π and re-
pulsive for φ0 > π. In particular, the equilibrium position
corresponding to the geometry of a single plate (φ0 = π)
is unstable. For the region inside the shell the part in the
VEV of the energy-momentum tensor induced by the pres-
ence of the cylindrical shell is non-diagonal and the cor-
responding components are given by (38) and (39). The
vacuum energy density induced by the cylindrical shell in
the interior region is negative. We have investigated the
vacuum densities induced by the cylindrical shell in vari-
ous asymptotic regions of the parameters. For points near
the cylindrical shell the leading terms in the asymptotic ex-
pansions over the distance from the shell are given by (50).
These terms are the same as those for a cylindrical shell
when the wedge is absent. For a wedge with φ0 < π the part
in the vacuum energy-momentum tensor induced by the
shell is finite on the edge r=0. For φ0 >π the shell-induced
parts in the energy density and the axial stress remain fi-
nite, whereas the radial and azimuthal stresses diverge as
r2(π/φ0−1). The corresponding off-diagonal component be-
haves like r2π/φ0−1 for all values φ0. For the points near the
edges (r = a, φ= 0 and φ0) the leading terms in the cor-
responding asymptotic expansions are the same as for the
geometry of a wedge with the opening angle φ0 = π/2. In
the limit of small opening angles, φ0� π, the shell-induced
parts behave like 1/φ0. In the same limit the parts corres-
ponding to the wedge without the shell behave as 1/φ40,
and for points not too close to the shell these parts dom-
inate in the VEV of the energy-momentum tensor. The
presence of the shell leads to additional forces acting on the
wedge sides. The corresponding effective azimuthal pres-
sure is given by (48) and these forces are always attractive.
The VEVs of the field square and the energy-momentum

tensor in the region outside the cylindrical shell are investi-
gated in Sect. 4. As in the case of the interior region, these
VEVs are presented as sums of the parts corresponding
to the wedge without the cylindrical shell and the parts
induced by the shell. The latter are given by (62) for the
field square and by (67) and (66) for the components of
the energy-momentum tensor. In the exterior region the
vacuum energy density induced by the cylindrical shell
is always positive. Additional forces acting on the wedge
sides due to the presence of the shell are given by (69). As
in the case of the interior region these forces are attrac-
tive. For large values of the parameter q, the contribution
into the parts induced by the cylindrical shell coming from
the modes withm �= 0 is exponentially suppressed, whereas
the contribution of the lowest mode,m= 0, is proportional
to q. Though in this limit the vacuum densities are large,
due to the factor 1/q in the spatial volume element, the cor-
responding global quantities tend to finite limiting values.
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